- Проблеми надзвичайних ситуацій. Харків: УЦЗУ, 2008. Вип. 7. С. 36—41.
- 2. Луканин В.Н., Шатров М.Г., Камфер Г.М. Теплотехника. М.: Высшая школа, 2002.-671 с.
- 3. Churchill V.T. Bernstein M. A correlating equation for forced convection from gases and liquids to a circular cylinder in crossflow // J. Heat Transfer, 1977. V. 99. P. 300 306.

УДК 355.77

Ромин А.В., канд. техн. наук, зам. нач. фак., УГЗУ, Фесенко Г.В., канд. техн. наук, доц., УГЗУ, Попов В.М., канд. техн. наук, проректор, УГЗУ

ПРОГНОЗИРОВАНИЕ ПОТЕРЬ НАСЕЛЕНИЯ В ЗОНАХ ХИМИЧЕСКОГО ЗАРАЖЕНИЯ

(представлено д-ром техн. наук Лариным А.Н.)

Рассмотрен порядок прогнозирования потерь населения в зонах химического заражения с учетом данных о местах пребывания людей в течение суток. Получены зависимости потерь числа пораженных от соотношения сельского и городского населения в районе заражения, а также от времени действия опасного химического вещества на людей с различными степенями защиты.

Постановка проблемы. Бурное развитие химической промышленности привело к тому, что на сегодняшний день в национальной экономике Украины функционирует около 1,6 тыс. объектов, на которые хранится или используется в производственной деятельности больше 330 тыс. т опасных химических веществ (ОХВ). Поскольку данные объекты невозможно изолировать от населенных пунктов, в зонах возможного химического заражения от них проживает около 14 млн. человек (около 32 % населения страны). Масштабность последствий химических аварий дает основание говорить об актуальности задачи прогнозирования потерь населения в зонах химического заражения. Полученные прогнозные оценки позволят разработать рекомендации по совершенствованию комплекса организационно-технических мероприятий, на-

правленных на исключение или максимальное снижение числа пострадавших от химических аварий.

Анализ последних исследований и публикаций. В большинстве методик оценки химической обстановки при авариях на химически опасных объектах (ХОО) [1-4] предлагается рассчитывать потери населения с учетом данных о средней плотности и численности населения в зоне поражения, а также используя фиксированные значения коэффициентов защиты для сооружений, в которых могут находиться люди. Однако, как показывают исследования, такой подход позволяет получать довольно грубые оценки по следующим причинам.

Во-первых, в течение суток население пребывает в различных местах, каждое из которых имеет свою степень защищенности от поражающих факторов химической аварии (спят ночью, едут в транспорте или движутся пешком на работу в утренние часы, работают днем и т.д.).

Во-вторых, в сельской и городской местности характер деятельности различен (городское население в основном занято на промышленном производстве, следовательно, в случае аварии, с большой вероятностью будет находиться в помещении; сельское население в летний период более подвержено воздействию поражающих факторов по причине работы в условиях открытой местности на полях, а в зимнее время значительно лучше защищено, так как большую часть времени проводит в зданиях и сооружениях).

В-третьих, в зависимости от времени действия ОХВ коэффициент защиты того или иного сооружения со временем уменьшается, что приводит к увеличению потерь.

Постановка задачи и ее решение. Для получения более точных данных о числе пораженных в районе химического заражения авторы предлагают следующий порядок прогнозной оценки.

Вначале в соответствии с [5] необходимо провести деление района химического заражения на четыре зоны поражения (рис.1).

На следующем этапе производится расчет числа пораженных в каждой из зон с учетом данных о месте пребывания населения в заданное время суток и степени его защищенности

$$Z_{i} = N_{i}^{e} \left(\sum_{j=1}^{n} \frac{q_{j}}{K_{sau_{i}j}} \right) + N_{i}^{e} \left(\sum_{j=1}^{n} \frac{q_{j}}{K_{sau_{i}j}} \right), \tag{1}$$

где $i=\overline{1,m}$, причем m - количество зон поражения (при делении территории в соответствии с рис.1 индекс 1 имеет зона смертельных поражений, 2 — тяжелых поражений, 3 — поражений средней тяжести, 4 — легких поражений); n - число степеней защиты; N_i^c - численность городского населения в i - й зоне поражения; N_i^c - численность сельского населения в i - й зоне поражения; q_j - доля людей с j - й степенью защиты в зависимости от времени суток; $K_{\text{защ}\,j}$ - коэффициент защиты j - го сооружения с учетом времени, прошедшего после аварии.

Рис. 1 - Деление района химического заражения

На заключительном этапе определяются суммарные потери населения в районе химического заражения

$$Z_{\Sigma} = \sum_{i=1}^{m} Z_i \quad . \tag{2}$$

С использованием формул (1) и (2) было исследовано влияние на потери населения (в процентах от общего числа населения, проживающего в зоне заражения, Z_{Σ} , %) следующих параметров: времени суток t_{cym} (рис.2, исходные данные: N_1^c =80;

 N_2^c =1000, N_2^c =100; N_3^c =1500, N_3^c =200; N_4^c =1700, N_4^c =300; время действия ОХВ $t_{OXB}=0.25$ часа; коэффициенты защиты: открытая местность, поле и сельскохозяйственные предприятия - 1; учреждения и производственные здания — 3; транспорт — 7; жилые и общественные помещения — 30); времени действия ОХВ t_{OXB} на население с различными степенями защиты (рис.3, исходные данные: N_1^c =800, N_1^c =80; N_2^c =1000, N_2^c =100; N_3^c =1500, N_3^c =200; N_4^c =1700, N_4^c =300; время суток $t_{cym}=15$ -17 часов); доли городского d_c ,% населения в зоне смертельных поражений (рис.4, исходные данные: общая численность городского и сельского населения — 1000 человек, время суток -15-17 часов, время действия ОХВ — 1 час).

Анализ представленных на рис.2-4 графиков позволяет сделать следующие выводы.

Для фиксированного времени воздействия ОХВ, равного 0,25 часа, наименьшие потери в любое время суток имеет городское население (максимальные потери составляют 35% в интервале с 7 до 10 часов, а минимальные – 5% в интервале с 0 до 6 часов).

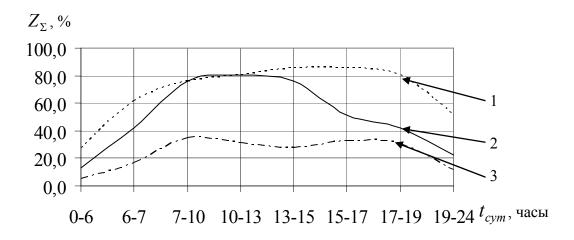


Рис. 2 – Графики зависимости потерь городского и сельского населения от времени суток: 1-село (лето); 2-село (зима); 3-город

Сельское население наиболее уязвимо в летний период (максимальные потери составляют 86% в интервале с 13 до 17 часов, а минимальные — 28% в интервале с 0 до 6 часов), и меньшие потери несет зимой (максимальные потери составляют 81% в интервале с 10 до 13 часов, а минимальные — 13% в интервале с 0 до 6 часов).

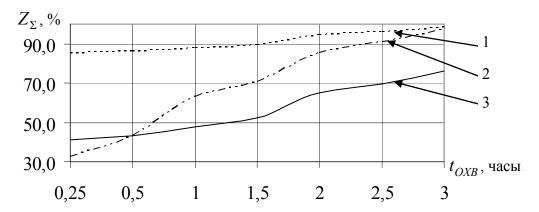


Рис. 3 – Графики зависимости потерь населения от времени действия ОХВ: 1-село (лето); 2 - город; 3- село (зима)

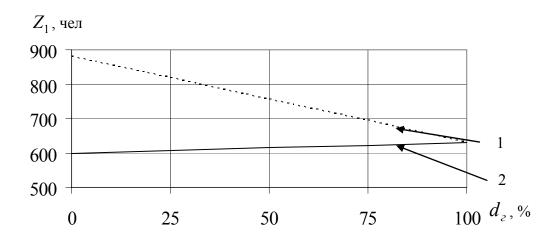


Рис. 4 – Графики зависимости суммарных потерь от доли городского населения: 1-лето; 2-зима

Для фиксированного интервала времени с 15 до 17 часов наблюдается рост потерь городского и сельского населения с возрастанием времени действия ОХВ. При этом, если время воздействия составляет от 0,25 до 0,5 часа, то меньшие потери как в зимний, так и в летний период, несет городское население; при дальнейшем увеличении времени воздействия, наименьшие потери наблюдаются у сельского населения в зимний период. С увеличением доли городских жителей среди населения зоны химического заражения общие потери в летнее время уменьшаются, а в зимнее увеличиваются.

Выводы. Рассмотрен порядок расчета потерь населения города и села в зимний и летний период с учетом данных о месте пребывания людей в течение суток. Показано, что наименьшие

потери наблюдаются для всех категорий населения в период с 0 до 6 часов. В период с 15 по 17 часов сельское население несет большие потери, чем городское, в летний период, и, при времени воздействия ОХВ больше 0,5 часа имеет меньшие потери зимой.

ЛИТЕРАТУРА

- 1. Методика прогнозирования масштабов заражения сильнодействующими ядовитыми веществами при авариях (разрушениях) на химически опасных объектах и транспорте. М: ГО СССР, 1990. 13 с.
- 2. Методическое пособие по прогнозированию и оценке химической обстановки в чрезвычайных ситуациях. М.: ВНИИ ГОЧС, 1993. 130 с.
- 3. Прогнозування масштабів і наслідків хімічних небезпечних ситуацій. К.: ЗАТ «Укртехногрупа», 2000. 22 с.
- 4. Методика прогнозування наслідків виливу (викиду) небезпечних хімічних речовин при аваріях на промислових об'єктах і транспорті. http://uazakon.com/big/text1560/pg1.htm.
- 5. Козлитин А. М., Яковлев Б.Н. Чрезвычайные ситуации техногенного характера. Прогнозирование и оценка. Детерминированные методы количественной оценки опасностей техносферы: Учебное пособие. Саратов: СГТУ, 2000. 124 с. nuczu.edu.ua