УДК 614.84

А.В. Елизаров, к.т.н., доцент, НУГЗУ

УЧЕТ ХИМИЧЕСКОГО СОСТАВА ГОРЮЧЕГО ВЕЩЕСТВА ПРИ РАСЧЕТЕ РАСПРОСТРАНЕНИЯ ПРОДУКТОВ ГОРЕНИЯ ПРИ ПОЖАРЕ В ПОМЕЩЕНИИ

(представлено д-ром техн. наук Прохачем Э.Е.)

В статье рассмотрен химический баланс процесса пожара в замкнутом объеме и предложен способ учета химического состава горючего вещества.

Ключевые слова: химический баланс, «холодная» и «горячая» зона, скорость выгорания, продукты горения, удельная теплота сгорания.

Постановка проблемы. При исследовании процесса дымообразования и дымоосаждения весьма существенную роль играет решение задачи о возникновении, распространении, осаждении дыма и разработка на основе теоретического решения вычислительных алгоритмов и соответствующего программного обеспечения

Анализ последних исследований и публикаций. Разработанные в СССР и впоследствии в России решения [1] являются весьма приближенными и не учитывают, например, таких факторов, как изменение состава горючего вещества во времени под влиянием высокой температуры.

Постановка задачи и ее решение. Нашей задачей будет построить приближенную модель учета химического состава горючего вещества, которая, в отличие от [2], позволит оформить результаты в виде конечных формул и, следовательно, удобна в инженерных расчетах.

Согласно определению [1], дымом называется конденсационный аэрозоль с твердой дисперсной фазой. Однако весьма существенным в процессе пожара является также выделение диоксида углерода (CO_2) и других газовых компонентов (HCN, HCl), вредно действующих на организм человека. Поэтому выделение таких газов необходимо рассматривать наряду с выделением твердых частиц.

Рассмотрим движение внутри помещения следующих веществ: частицы дыма (сажа), хлороводород (HCl), цианид водовода (HCN), диоксид углерода (CO₂), оксид углерода (CO), сероводород (H_2S).

В общем случае математическая модель химического баланса компонентов горючего и продуктов горения при пожаре разработана в работе [2].

В качестве характеристик горючего вещества в происходящей реакции будем рассматривать следующие величины: S/C — соотношение массы сажи (твердых частиц дыма), которая возникает в результате горения, к массе углерода в веществе; C/ρ — то же для углерода / всей мас-

сы вещества, здесь ρ - плотность вещества; CO/CO_2 — то же для оксида / диоксида углерода; HCI/C — массовые отношения в горючем веществе — хлороводород / углерод; HCN/C то же для цианида водорода / углерода; H/C — то же для водорода/углерода; H_2S/C — то же для сероводорода/углерода.

Подчеркнем, что первые три величины, приведенные выше, относятся к продуктам горения, а последующие четыре — к составу горючего вещества. Причем, если состав горючего вещества постоянен, то соотношение различных продуктов горения меняется во времени, поэтому естественно задать величины S/C и CO/CO_2 как S/C(t) и $CO/CO_2(t)$, то есть в виде функций времени.

Покажем, каким образом на основании приведенных данных можно рассчитать содержание компонентов продуктов горения в помещении.

Зададим в числе условий задачи скорость пиролиза вещества $v_{\rho}(t)$ – количество вещества, которое переходит в газообразную фазу в единицу времени (возможно неполное сгорание, поэтому скорость пиролиза при недостатке кислорода, вообще говоря, не совпадает со скоростью выгорания $v_{\rm f}(t)$, то есть количество вещества горючего, которое участвует в реакции, сгорающем за единицу времени). Тогда, например, скорость выделение газообразного хлороводорода и частиц дыма определяются уравнениями

$$V_{HCl} = (HCl/C) (C/\rho) v_{\rho},$$

$$V_{S} = (S/C)(C/\rho) v_{\rho}.$$
(1)

Количество остальных компонентов, не участвующих в реакции, в продуктах горения определяются аналогично.

Для определения массового выхода продуктов горения используем известное уравнение [2, 3]

$$v_0 = \frac{v_f \cdot H_C}{1.32 \cdot 10^7} , \qquad (2)$$

где v_o – масса кислорода, участвующая в реакции в единицу времени, кг/с; H_c – теплота сгорания вещества, Дж/кг, v_f – скорость выгорания.

Уравнение (2) дает связь между скоростью выгорания и количеством потребляемого кислорода (в процессе рассматриваемой реакции кислород расходуется на взаимодействие с углеродом, который содержится в горючем веществе). На основании закона сохранения вещества имеем

$$v_f + v_o = v_{co2} + v_{co} + v_s + v_{HCl} + v_{HCN} + v_{H2O}$$
. (3)

70 А.В. Елизаров

Отсюда получаем для скорости выделения диоксида углерода

$$v_{co2} = v_f (1 + H_c / 1.32 * 10^7 - \phi_S - \phi_{HCl} - \phi_{HCN} - \phi_{H2O}) / (1 + CO/CO_2),$$
 (4)

где ϕ_S , ϕ_{HCI} , ϕ_{HCN} , ϕ_{H2O} — значение массы соответствующего вещества, которая выделяется при сгорании единицы массы горючего вещества.

Для оксида углерода соответственно:

$$v_{co} = v_{co2} \left(CO/CO_2 \right). \tag{5}$$

Полученные результаты непосредственно применимы для приближенной оценки концентрации дыма при развитии пожара в помещениях.

Рассмотрим образец, представляющий собой брусок горючего материала, причем толщина образца мала в сравнении с другими размерами. Горение начинается в центре образца. Рассматривается период времени, когда характерные размеры пожара значительно меньше длины и ширины образца.

Пусть для вещества известна скорость выгорания с единицы площади - v_{fl} и скорость распространения пламени по поверхности - v^* (м/с). Тогда площадь пожара в момент времени t можно оценить по формуле

$$S_f = \pi (v \cdot t)^2. \tag{6}$$

Отсюда скорость выгорания (в нашем случае считаем ее равной скорости пиролиза)

$$V_f = \pi (\mathbf{v} \cdot \mathbf{t})^2 \, \mathbf{v}_{f1}. \tag{7}$$

Можно утверждать, что масса диоксида углерода, хлороводорода и т.д., которые выделяются в процессе реакции горения в единицу времени, приближенно рассчитывается, как полином второй степени (7). Соответственно масса продуктов горения по всему объему помещения растет как t^3 .

Предложенный способ может быть легко распространен на образец произвольной формы, если задана скорость распространения пламени по его поверхности.

Выводы. Полученные соотношения позволяют без использования сложного программного обеспечения, на основании конечных формул оценивать концентрацию продуктов горения в помещении во время пожара, что является важным при разработке рациональной тактики действий при ликвидации пожаров, а также для разработки оперативных документов на объекты.

ЛИТЕРАТУРА

- 1. Абдурагимов И.М. Физико-химические основы тушения пожаров / И.М.Абдурагимов, В.Ю.Говоров, В.Г.Макаров. М.: ВИПТШ, 1980.-255 с.
- 2. Richard D. Peacock, Glenn P. Forney, Paul Reneke, Rebecca Portier. Walter W/ Jones CFAST. The consolidated Model of Fire Growth and Smoke Transport //Nist Technical Note 1299. 1993. 253p.
- 3. Standard Test Method for Heat and Visible Smoke Release for Materials and Product Using the Consumption Calorimeter. ASTM E1354, American Society for Testing and Materials, Philadelphia, RA 1990. 36 p.
- 4. Єлізаров О.В. Оперативне визначення основних характеристик утворення і розповсюдження диму при пожежі у приміщенні [Текст]: автореф.... канд. техн. наук: 21.06.02 / Олександр Вікторович Єлізаров; X., 2001. 17с.

О.В. Єлізаров

Спосіб обліку хімічного складу горючої речовини при розрахунку розповсюдження продуктів горіння при пожежі у приміщенні

У статті розглянуто хімічний баланс процесу пожежі в замкнутому об'ємі і запропоновано спосіб урахування хімічного складу горючої речовини.

Ключові слова: хімічний баланс, "холодна" і "гаряча" зона, швидкість вигоряння, продукти горіння, питома теплота згоряння.

A.V. Elizarov

The method of accounting of the chemical composition of combustible material in the calculation of the spread of combustion products in a fire at the premises

The article examines the chemical balance of the process of a fire in a confined space and the method of accounting of the chemical composition of combustible material.

Keywords: chemical balance, "cold" and "hot" zone, the speed of burnout, the products of combustion, specific heat of combustion.

72