А.Н. Литвяк, к.т.н., доцент, НУГЗУ, М.Н. Мурин, к.т.н., доцент, НУГЗУ

РАСЧЕТ ЗВУКОВОГО ПОЛЯ СИСТЕМЫ ЗВУКОВОГО ОПОВЕЩЕНИЯ В ПРОИЗВОДСТВЕННОМ ПОМЕЩЕНИИ

(представлено д.т.н. Соболем А.Н.)

Выполнен расчет звукового поля системы звукового оповещения в производственном помещении с установленным оборудованием.

Ключевые слова: звуковое оповещение при пожаре, оповещатель пожарный звуковой, звуковое поле, уровень звукового давления, уровень звуковой мощности, уровень шума в помещении.

Постановка проблемы. Звуковое поле от системы звукового оповещения о пожаре (СЗО) сложное [4]. В производственных помещениях (ПП) на звуковое поле СЗО накладывается звуковое поле работающего оборудования. В таких условиях повышение эффективности систем оповещения о пожаре позволяет правильно организовать эвакуацию людей из защищаемого помещения. Таким образом, существует проблема расчета и анализа сложных звуковых полей производственных помещений с установленной СЗО.

Анализ последних исследований и публикаций. В [3] рассматривается модель звукового поля производственного помещения с ограничениями по углу и направленности точечного источника шума. В [4] представлена модель СЗО с учетом ее размещения в помещении. Взаимодействия полей СЗО и работающего оборудования не рассматривалось.

Постановка задачи и ее решение. Целью работы является оценка соответствия СЗО на предмет удовлетворения требованиям нормативных документов [1,2] в условиях наложения звуковых полей. Для этого необходим корректный расчет звукового поля СЗО в производственном помещении с работающим технологическим оборудованием.

Уровень звукового давления в произвольной точке производственного помещения с несколькими источниками шума [2]

$$L_{\delta\phi \Sigma} = 10 \lg \left(\sum_{i=1}^{m} \frac{\chi_{i} \cdot \phi_{i}}{\Omega_{i} \cdot R_{i}^{2}} \cdot 10^{0.1 L_{wi}} + \frac{4}{kB} \cdot 10^{0.1 L_{wi}} \right), \tag{1}$$

где χ — коэффициент влияния ближнего поля; ϕ — фактор направленности источника звука; Ω — угол излучения источника звука; R — расстояние от источника звука до расчетной точки; Lw — уровень мощности источника звука; k — коэффициент нарушений диффузного поля; B — акустическая постоянная помещения.

Расстояние от источника звука до произвольной точки помещения необходимо задать как переменную величину в зависимости от координат помещения

$$R_i(x, y, X_i, Y_i, Z_i) = \sqrt{(x - X_i)^2 + (y - Y_i)^2 + (Z_0 - Z_i)^2},$$
 (2)

где x, y — текущие координаты помещения; X_i , Y_i , Z_i — координаты расположения центра источника звука; Z_0 — высота выполнения расчета (средний рост человека).

Используя в расчетах подходы [3–4], можно определить уровень звукового давления в любой точке помещения. Представляя результаты расчета в виде данных для всего помещения в целом, получим пространственную картину уровня звукового давления, под которой и будем понимать звуковое поле.

На рис. 1–3 показаны результаты расчета звукового поля для производственного помещения размером (20x20)м с шестью работающими станками и ЗСО, имеющего в своем составе четыре одинаковых звуковых оповещателя (ЗО). Уровень звуковой мощности станка в расчете принят равным 70 дБ. Уровень звуковой мощности звукового оповещателя (ЗО) принят в расчетах равным 85дБ. Расположение ЗО принято — на стенах помещения с учетом рекомендаций [1]. Расчет выполнен для высоты среднего человеческого роста Z_0 =1,75м с применением программы MathCad.

Уровень звукового давления в произвольной точке производственного помещения от работающего оборудования показан на рис. 1.

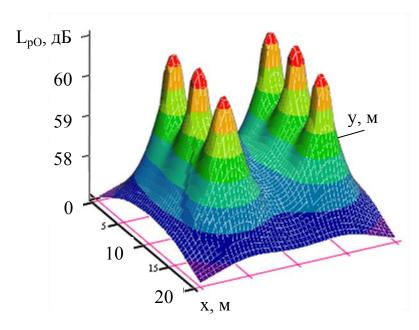


Рис. 1. Уровень шума от оборудования

Уровень звукового давления в произвольной точке производствен-

ного помещения от СЗО показан на рис. 2.

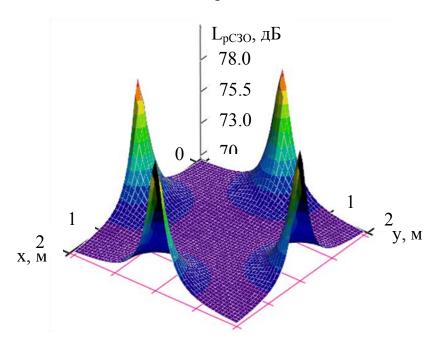


Рис. 2. Уровень звука от СЗО

Суммарный уровень звукового давления в производственном помещении от работающего оборудования и СЗО показан на рис. 3.

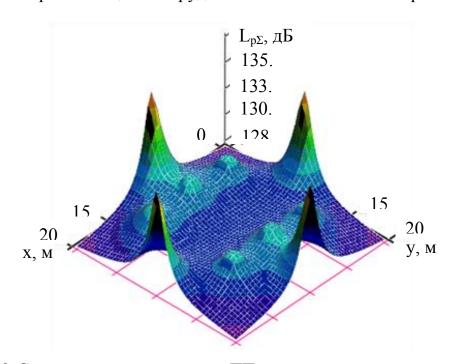


Рис. 3. Суммарный уровень звука в ПП

Выводы. Звуковое поле в ПП от системы звукового оповещения и работающего оборудования сложное. Могут иметь место зоны, в которых не выполняются требования [1] по уровню звукового давления от 3СО. Для оценки эффективности работы 3СО необходимо проведение дополнительных исследований.

ЛИТЕРАТУРА

- 1. ДБН В.2.5-56-2014. Інженерне обладнання будинків і споруд. Системи протипожежного захисту. Київ: Мінірегіонбуд України, 2015. 127 с.
- 2. ДСН 3.3.6.037-99. Санітарні норми виробничого шуму, ультразвуку та інфразвуку. Київ: МОЗУ, 1999. 32 с.
- 3. Дзюндзюк Б.В., Мамонтов А.В. Математическое моделирование шума в лабораторном практикуме по дисциплине «Основы охраны труда» / Б.В. Дзюндзюк, А.В. Мамонтов // Вестник Харьковского национального автомобильно-дорожного университета. Харьков: ХНАДУ, 2012. Выпуск 59. С. 21-25.
- 4. Литвяк А.Н. Расчет уровня звукового давления оповещателя звукового пожарного в помещении / А.Н. Литвяк, М.Н. Мурин // Проблемы пожарной безопасности. Харьков: НУГЗУ, 2016. Выпуск 39. С. 168-170.

Получено редколлегией 20.10.2016

О.М. Литвяк, М.М. Мурін

Розрахунок звукового поля системи звукового оповіщення у виробничому приміщенні

Виконано розрахунок звукового поля системи звукового оповіщення у виробничому приміщенні з встановленим обладнанням.

Ключові слова: звукове оповіщення при пожежі, оповіщувач пожежний звуковій, звукове поле, рівень звукового тиску, рівень звукової міцності, рівень шуму у приміщенні.

A.N. Litvyak, M.N. Murin

Calculation of sound field public address system in the production hall

The calculation of the sound field of the sound notification system on the shop floor with the installed equipment.

Keywords: sound notification in case of fire, Fire alarms, sound, sound field, the sound pressure level, sound power level, the noise level in the room.