А.А. Деревянко, к.т.н., доцент, нач. каф., НУГЗУ, А.Н. Литвяк, к.т.н., доцент, доцент каф., НУГЗУ

РАСЧЕТ РАСХОДА ПОРОШКОВО-ГАЗОВОЙ СМЕСИ ЧЕРЕЗ ВЫПУСКНОЙ НАСАДОК ПОРОШКОВОЙ АВТОМАТИЧЕСКОЙ СИСТЕМЫ ПОЖАРОТУШЕНИЯ

(представлено д.т.н. Абрамовым Ю.А.)

Разработана математическая модель для расчета входных насадок порошковых автоматических систем пожаротушения.

Ключевые слова: огнетушащий порошок, автоматическая система порошкового пожаротушения, выходной насадок, модуль порошкового пожаротушения.

Постановка проблемы. Универсальность применения огнетушащих порошков объясняет не только широту применения на объектах автоматических установок порошкового пожаротушения, но и разнообразие их конструктивного исполнения. В нормативных документах [1] приводятся требования к системам порошкового пожаротушения, такие как время выпуска заряда и огнетушащая концентрация. Методик гидравлического расчета модулей порошкового пожаротушения не приводится, вследствие чего область применения такого универсального огнетушащего средства как порошок ограничивается количеством готовых заводских изделий с заявленными параметрами. Таким образом, существует проблема в отсутствии удобных для практического применения методик гидравлического расчета систем порошкового пожаротушения.

Анализ последних исследований и публикаций. Расчет течения порошково-газовой смеси рассмотрено в [3–5]. При этом рассматривается стационарное течение порошково-газовой смеси в трубопроводах с дозвуковыми скоростями, характерное для транспортных коммуникаций. Расчет нестационарного течения огнетушащих порошков через выпускные насадки при сверхкритических перепадах давления не рассматривается.

Постановка задачи и ее решение. Рассмотрим задачу газодинамического расчета модуля порошкового пожаротушения. Особенностью конструкции такого модуля является наличие сифонной трубки, через которую порошок подается к выпускному насадку. Для нормальной работы модуля его необходимо располагать так, чтобы сифонная трубка обязательно располагалась вертикально.

Рассмотрим элементарную струйку тока при выносе элементарной частички из модуля порошкового пожаротушения (рис. 1).

Рис. 1. Расчетная схема

На схеме обозначены следующие характерные сечения: 0-0 – невозмущенный поток в модуле; 1-1 – вход в сифонную трубку; Г-Г – горло струйки тока в относительном движении; С-С – критическое сечение выпускного насадка.

Чтобы обеспечить течение порошковой смеси по вертикальной сифонной трубке, аэродинамическая сила от воздействия газового потока должна уравновешивать силу тяжести элементарной частицы порошка.

Примем следующие допущения:

- поток одномерный, осесимметричный;

- газ носитель – идеальный;

 частички порошка имею сферическую форму и одинаковый диаметр поперечного сечения;

- взаимодействие между частицами порошка отсутствует.

Аэродинамическая сила газового потока У определяется по формуле [2]

$$Y = C_x \rho_{\Gamma_0}^* \frac{V_{B3}^2}{2} F_{\Pi} = m_{\Pi} g, \qquad (1)$$

где C_x – коэффициент лобового сопротивления шара, зависит от числа Re и для рассматриваемых скоростей в относительном движении может быть принят постоянным и равным 0,5 [2]; F_{Π} – площадь поперечного сечения элементарной частички; m_{Π} – масса элементарной частички; V_{B3} – минимальная скорость потока, обеспечивающая взвешенное состояние частички; $\rho_{\Gamma_0}^*$ – заторможенная плотность газа; g – ускорение свободного падения.

Из формулы (1) найдем

$$V_{B3} = \sqrt{\frac{2m_{\Pi}g}{C_{x}\rho_{\Gamma_{0}}^{*}F_{\Pi}}}.$$
 (2)

С другой стороны, сила тяжести уравновешивается разностью статических давлений, действующих на наветренную и подветренную стороны частички:

$$\Delta \mathbf{p} \cdot \mathbf{F}_{\Pi} = \mathbf{m}_{\Pi} \cdot \mathbf{g}$$
 или $\Delta \mathbf{p} = (\mathbf{p}_1 - \mathbf{p}_{\Gamma}) = \frac{\mathbf{m}_{\Pi} \cdot \mathbf{g}}{\mathbf{F}_{\Pi}},$ (3)

где р₁, р_Г – статическое давление сечениях 1-1 и Г-Г (рис. 1).

Статическое давление движущегося потока в сечении 1-1 и Г-Г можно определить из обобщенного уравнения Бернулли по известным газодинамическим функциям [2]:

$$p_1 = p_0^* \cdot \pi(\lambda_{B3}), \ p_{\Gamma} = p_0^* \cdot \pi(\lambda_{\Gamma}), \tag{4}$$

где p_0^* – полное давление потока в сечении 0-0 [2], $\lambda_{B3} = \lambda_1$, λ_{Γ} – приведенные скорости потока [2].

Из уравнений (2-4) можно определить значение газодинамической функции для взвешенного состояния

$$\pi(\lambda_{\Gamma}) = \left(\pi(\lambda_{B3}) - \frac{m_{\Pi}g}{F_{\Pi}p_0^*}\right).$$
(5)

Из уравнения (5) можно определить приведенную скорость потока в сечении Г-Г

$$\lambda_{\Gamma} = \sqrt{\frac{k+1}{k-1} \cdot \left(1 - \pi (\lambda_{\Gamma})^{\frac{k-1}{k}}\right)},\tag{6}$$

где k – показатель адиабаты.

Площадь элементарной струйки тока в сечении Г-Г будет

$$\mathbf{F}_{\mathbf{\mathcal{H}}\mathbf{B},\Gamma} = \mathbf{F}_{\Pi} + \mathbf{F}_{\Gamma}.\tag{7}$$

Из условия баланса расходов газа в сечении 1-1 и Г-Г получаем

$$F_{\Gamma} = \frac{q(\lambda_{B3})}{q(\lambda_{\Gamma}) - q(\lambda_{B3})} \cdot F_{\Pi}.$$
 (8)

Из полученных уравнений (5-8) можно определить площадь струйки тока и расход газа, обеспечивающие взвешенное состояние элементарной частички порошка в относительном движении.

В критическом сечении выпускного насадка С-С площадь струйки тока будет

$$F_{\Gamma_{\rm C}} = \frac{F_{\Gamma}}{\sigma_{\rm TP}},\tag{9}$$

где σ_{TP} – потери полного давления в трубопроводной магистрали от сечения 1-1 до сечения C-C.

Число несущих струек тока в критическом сечении насадка:

$$A = \frac{F_0}{F_{\Pi} + F_{\Gamma_c}},$$
(10)

где F_0 – площадь проходного сечения выпускного насадка.

Суммарный массовый расход газа через критическое сечение насадка в абсолютном движении [2]

$$G_{C\Sigma} = m \frac{\sigma_{TP} \cdot p_0^*}{\sqrt{T_0^*}} \cdot q(\lambda_C) (F_0 - F_{\Pi} A).$$
(11)

Скорость истечения порошка из насадка

$$C_{\Pi} = C_{KP} \cdot (\phi_C \lambda_C - \lambda_{\Gamma}), \qquad (12)$$

где С_{КР} – критическая скорость газа; ϕ_C – потери скорости при течении из насадка [2].

Массовый расход порошка через критическое сечение насадка:

$$G_{\Pi} = \xi \cdot \rho_{\Pi} \cdot C_{\Pi} \cdot F_{\Pi} \cdot A, \qquad (13)$$

где ξ – коэффициент заполнения, учитывает реальную форму элементарной частички порошка; ρ_Π – плотность огнетушащего порошка.

Выводы. Получена система уравнений для расчета динамики выхода огнетушащего порошка из модуля порошковой АСПТ.

ЛИТЕРАТУРА

1. ДБН В.2.5–56–2014. Інженерне обладнання будинків і споруд. Системи протипожежного захисту. Київ: Мінірегіонбуд України, 2015. – 127 с.

2. Абрамович Г.Н. Прикладная газовая динамика. Учебное руководство для втузов. – 5-е изд., порераб. и доп..: Наука, Гл. ред. физ-мат. лит, 1991. – 600 с.

3. Криль С.И. Напорные взвесенесущие потоки. /С.И. Криль. – Наукова думка, 1990. – 160с.

4. Криль С.И. Численное моделирование течения газовзвесей в трубах при высоких давлениях / С.И. Криль, В.П. Берман // Гидромеханика. – 1996. – Вып. – 70. – С. 53-60.

5. Чальцев М.Н. О гидравлическом расчете трубопроводов для пневмотранспортных систем / М.Н. Чальцев // Вестник Национального технического университета Украины «Киевский политехнический институт». Сер. Машиностроение. – 2000. – Т1. – №38. – С. 50-54.

Получено редколлегией 13.10.2017

О.А. Дерев'янко, О.М. Литвяк

Розрахунок витрати порошково-газової суміші через вихідний насадок порошкової автоматичної системи пожежогасіння

Виконано оцінка ефективності системи звукового оповіщення у виробничому приміщенні з встановленим обладнанням.

Ключові слова: вогнегасний порошок, автоматична система порошкового пожежогасіння, вихідний насадок, модуль порошкового пожежогасіння.

O. Derev'yanko, A. Litvyak

Calculation of the flow rate of the powder-gas mixture through the nozzle nozzle powder automatic fire extinguishing system

A mathematical model for calculating input nozzles of powder automatic fire extinguishing systems has been developed.

Keywords: fire extinguishing powder, automatic powder fire extinguishing system, outlet nozzles, powder fire extinguishing module.