УДК 614.8

П.А. Билым, канд. хим. наук, доцент, НУГЗУ, А.П. Михайлюк, канд. хим. наук, доц., професор, НУГЗУ, К.А. Афанасенко, преподаватель, НУГЗУ, Ю.И. Калябин, преподаватель, НУГЗУ

ВЛИЯНИЕ ЭКСТРЕМАЛЬНЫХ ТЕПЛОВЫХ ВОЗДЕЙСТВИЙ НА ОСТАТОЧНУЮ ПРОЧНОСТЬ СТЕКЛОПЛАСТИКА

(представлено д-ром техн. наук Прохачем Э.Е.)

По данным физико-механических и динамических исследований установлено, что стеклопластикам на основе полиэпоксидов свойственно, в ходе огневого воздействия, утрачивать исходную прочность и приобретать повышенную жесткость, сохраняя при этом достаточную целостность и относительную конструкционную функциональность.

Ключевые слова: стеклопластик, огневые испытания, остаточная прочность, динамический модуль упругости.

Постановка проблемы. В последние годы резко увеличился объем применения новых прогрессивных конструкций для строительства и транспортной инфраструктуры, изготовленных с участием композитных полимерных материалов. Однако внедрение этих материалов сопряжено с необходимостью решения ряда технических задач, одной из которых является обеспечение их приемлемой пожарной безопасностью. Так, в случае вероятного пожара, такой трудногорючий материал как стеклопластик должен удовлетворять дополнительные требования по обеспечению несущей способности в зоне влияния экстремальных тепловых воздействий.

Весьма содержательный материал по этому вопросу может быть получен при комплексном исследовании прочностных характеристик с подробной их интерпретацией свойствами вязкоупругой релаксации материала в условиях его интенсивного нагрева и последующего охлаждения до температуры окружающей среды.

Анализ последних исследований и публикаций. Ранее было показано, что применение полиэпоксидных связующих на основе олигомеров нафталенового ряда позволило без применения специальных средств внешней тепловой защиты повысить предел огнестой-кости испытуемых образцов стеклопластика в условиях развития пожара в стандартных условиях [1, 2]. Сведения, представленные в этих сообщениях, не дают полной картины о сохранении несущей способности композита, поскольку в нем отсутствуют экспериментальные величины остаточной прочности материала и не рассмотрена

динамика восстановления его упруго-прочностных характеристик при естественном охлаждении.

Постановка задачи и ее решение. С учетом перечисленных особенностей рассмотрим задачу по оценке сохранения остаточной прочности полимерного композита с учетом интерпретации динамики восстановления в нем упругой составляющей.

В настоящем сообщении приводятся результаты динамических механических испытаний стеклопластика, включающих стадии нагрева по стандартному режиму развития пожара и последующего охлаждением материала до стабилизации прочностных свойств при температуре окружающей среды.

Исследования проводились на экспериментальной установке на базе динамической ячейки и малогабаритной стендовой печи с горизонтальным проемом [3]. Согласно требованиям ДСТУ Б.В.1.1-4-98 в испытательной печи создавался температурный режим, близкий к условиям развития стандартного пожара. По прошествии 15 минут и достижении температуры $\sim 670~^{0}$ С нагрев отключали и проводили измерения динамического модуля сдвига и тангенса угла механических потерь до полного остывания образца в объеме огневой печи. Параллельно образцы стеклопластика были подвержены динамическим испытаниям по стандартной методике (ГОСТ 19873-74).

Судя по данным, представленным на рис.1, определяющую роль в изменении вязкоупругих характеристик стеклопластика играют условия нагрева. Так, с увеличением темпа нагрева характер изменения динамического модуля сдвига и спектр механических потерь в главной релаксационной области теряют свой традиционный вид. Причиной таких изменений является одновременное прохождение процессов релаксации и химических превращений, обусловленных интенсивным прохождением деструкции и частичного пиролиза материала [5]. В результате стеклопластик не склонен к проявлению высокоэластичного состояния и на конечных стадиях нагрева образец сохраняет достаточную жесткость.

Однако изменение структурно-механических характеристик материала не ограничивается стадией нагрева. При охлаждении (см. рис. в, Γ) стеклопластик продолжает «набирать» жесткость. Причем, для материала, подверженного действию нагрева в условиях развития пожара, нарастание динамического модуля сдвига происходит более интенсивно без видимого проявления пика α -релаксации на кривой 4 зависимости $tg\delta$ от τ . После полного остывания и повторных испытаний по стандартной методике (см. рис. д, е) стеклопластик ведет себя аналогично материалу неорганической природы [5], что характеризуется незначительным снижением динамического модуля сдвига и слабым увеличением механических потерь при повышении температуры.

Несомненный интерес вызывает сопоставление полученных структурно-механических характеристик стеклопластика с изменением его прочностных показателей после интенсивного теплового воздействия.

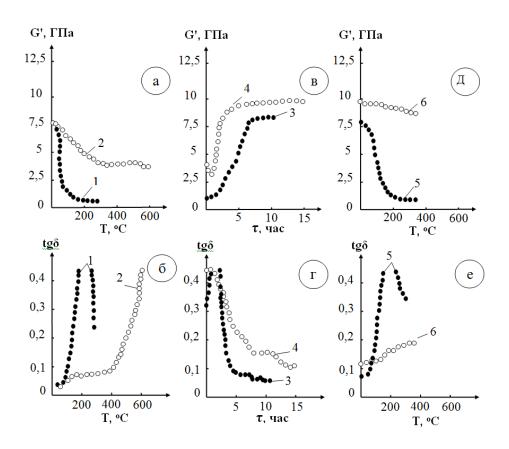


Рис. 1. - Зависимость динамического модуля сдвига G' от температуры (а, д), времени при охлаждении (в) и тангенса угла механических потерь tgб от температуры (б, е), времени в режиме охлаждения (г) для стеклопластика. Условия испытаний: нагрев линейный (4 град/мин) – 1; нагрев по стандартному режиму развития пожара – 2; охлаждение после испытаний по линейному нагреву – 3 и после огневых испытаний – 4; повторный линейный нагрев охлажденного образца и предварительно испытанного при линейном нагреве – 5 и испытанного в режиме развития стандартного пожара – 6

Как видно из данных, представленных в таблице 1, материал после интенсивного нагрева существенно теряет прочность, что свидетельствует о прохождении в объеме связующего термохимических превращений. Судя по показателям G', (см. рис. 1 в) материал приобретает повышенную жесткость, и этот прирост очевидно обусловлен существенным обуглероживанием полимерной связки и формированием плотноупакованной структуры перерожденного связующего. В тоже время, падение прочности происходит по причине образования пустот (пор и трещин), образование которых свойственно материа-

лам органической природы в процессе прохождения термоокислительной деструкции при интенсивном нагреве [6].

Таблица 1 Прочностные показатели стеклопластика

	Разрушающее напряжение, МПа		
Вид физико-		Остаточная прочность*:	
механического	Исходная		нагрева в условиях
испытания	прочность	линейного	развития стан-
		нагрева	дартного пожара
Растяжение	310	310	85
Сжатие	230	210	35
Изгиб	185	190	95

Примечание: * после действия нагрева и последующего самопроизвольного охлаждения в объеме испытательной камеры.

Выводы. При интенсивном нагреве стеклопластик утрачивает исходную прочность, но приобретает повышенную жесткость, сохраняя при этом достаточную целостность и относительную конструкционную функциональность. Несомненно, что определяющим фактором в наблюдаемой модификации композита является степень прохождения пиролитических превращений полимерной связки, которая косвенно может быть охарактеризована изменением динамических механических свойств материала при интенсивном нагреве.

ЛИТЕРАТУРА

- 1. Билым П.А. Закономерности разупрочнения конструкционных стеклопластиков в условиях нарастания температуры в режиме стандартного пожара / П.А. Билым, А.П. Михайлюк, К.А. Афанасенко // Проблемы пожарной безопасности: Сб. науч. тр. Харьков: УГЗУ, 2009. Вып. 25. С. 24 29.
- 2. Билым П.А. Влияние химической изомеризации глицидиловых эфиров динафтолов на сохранение прочности композитов в условиях развития стандартного пожара / П.А. Билым, А.П. Михайлюк, К.А. Афанасенко, Ю.И. Калябин // Проблемы пожарной безопасности: Сб. науч. тр. Харьков: НУГЗУ, 2010. Вып. 27. С. 26 32.
- 3. Билым П.А. Характер изменения динамического модуля сдвига стеклопластика при нагреве в условиях близких к начальной стадии развития открытого пожара / П.А. Билым, А.П. Михайлюк, К.А. Афанасенко // Проблемы пожарной безопасности. Харьков: УГЗУ, 2008.- Вып. 24. С.16-21.

- 4. Билым П.А. Исследование методом ЭПР пиролитических превращений в стеклопластиках при тепловых воздействиях пожара / А.П. Михайлюк, К.А. Афанасенко, В.В. Олейник // Проблемы пожарной безопасности: Сб. науч. тр. Харьков: НУГЗУ, 2010. Вып. 27. С. 33 38.
- 5. Исаханов Г.В. Прочность неметаллических материалов при неравномерном нагреве / Исаханов Г.В. К.: Наук. думка, 1971. 176 с.
- 6. Кодолов В.И. Горючесть и огнестойкость полимерных материалов / Кодолов В.И. М.: Химия, 1976. 163 с. nuczu.edu.ua

П.А. Білим, О.П. Михайлюк, К.А. Афанасенко, Ю.І. Калябін

Вплив екстремальних теплових навантажень на остаточну міцність склопластику.

За даними фізико-механічних та динамічних досліджень встановлено, що склопластикам на основі поліепоксидів притаманно в ході вогневого впливу втрачати вихідну міцність та набувати підвищену жорсткість, зберігаючи при цьому достатню цілісність та відносну конструктивну функціональність.

Ключові слова: склопластик, вогневі випробування, остаточна міцність, динамічний модуль пружності.

P.A. Bilim, O.P. Mykhailuk, K.A. Afanasenko, Yu.I. Kalyabin Extreme thermal loads on the final strength of fiberglass.

According to the physical, mechanical and dynamic research found that fiberglass-based on polyepoxides inherent in the impact of fire starting to lose strength and gain increased stiffness, while retaining sufficient structural integrity and relative functionality.

Keywords: fiberglass, fire test, ultimate strength, dynamic elastic modulus.